Down to the wire again…

A few days ago, I was able to share the happy news that the Space Elevator Documentary Sky Line had been successfully funded via Kickstarter.

Regular readers also know that there is another Space Elevator Documentary, Shoot The Moon, which is also trying to get funded via Kickstarter.

As of posting this, there are only 31 hours to go in this campaign and it is closing in on it’s funding goal of $37K.

If you’re interested in helping a Documentary targeting the Michael Laine / LiftPort effort to build a lunar space elevator, please consider donating to the effort, as I have.

Thank you!

New European Space Elevator competition planned

Details are very sketchy, but the good folks who ran the previous EUSPEC (European Space Elevator Challenge) have announced a new competition for 2015.  From their webpage:

“The next European Space Elevator Challenge will take place in 2015!

We are currently in the planning phase of EUSPEC 2015. Details regarding competition dates, rule book and team registration will be announced shortly on this website and on our Facebook page. Stay tuned!”

Of course this blog will be covering any and all developments with this event.  I would end this post with my tagline “Stay tuned!”, but EUSPEC used it already :)

Crowd Funding and the Space Elevator

Yet another space-elevator-related crowd funding effort has gotten underway, this time on Indiegogo.  Whereas the three previous space-elevator-related crowd funding efforts have been fairly modest in their goals ($8K for the initial LiftPort effort, $20K for the Sky Line Documentary and $37K for the Shoot The Moon Documentary), this new effort is trying to raise $1,000,000 – yes, a million dollars!

It is called “The Space Elevator: Open Source The Way Up” and, beneath the airy hyperbole, the ‘space elevator tower’ it’s proposing seems to be a variant of Nelson Semino’s concept known as “The SpaceShaft”.  The idea behind it is this: when Konstantin Tsiolkovsky originally proposed his tower that reached from the earth to Geostationary orbit (GEO), he was using the Eiffel Tower as a model, an actual building.  An earth-to-GEO tower is not possible as there is no material known (or theorized) that is strong enough to handle the weight of such a structure.  Of course, this hasn’t stopped some physics-challenged people from proposing one anyway – here is an article describing the recent idea of a “…Bollywood singer and part-time inventor…” for a 160km tall elevator called the ‘Telescopic Exo Shell’.  I do plan on putting up a separate blog post showing why this is just not possible.

The SpaceShaft attempts to get around this problem by building the tower out of lighter-than-air blocks filled with (in Semino’s case) Helium or (in this Open Source project) Hydrogen.  It sounds plausible at first rub, but even a cursory look at the idea starts to reveal problem after problem.  For example, system stability.  Wind is an issue, a real one.  The Space Shaft tries to solve it with a multitude of guy wires, Open Source by “Using sensors around the tower we can detect incoming winds and power the vertical blades to cancel any force that would bend the tower. If the capability of the wind blades is overwhelmed by the wind then magnetic flux interactions at each module connection will further counter act the bending.”  The proposal goes on to say that if this is not enough, the units will separate by repelling themselves magnetically and floating away, to be reconnected when things calmed down (presumably with quad-copters as stated in the video).  Professor Emmett Brown would be proud…

Another thing Open Source doesn’t address is the lifting capacity of the hydrogen modules.    Open Source wants to power the climbers electromagnetically.  If you’re talking about any reasonable sized payload (metric tons, at least), you’re going to need enormous magnets and then some way to power them.  According to the Video, the lower quarter of the tower will be wind turbines – will that generate enough power?  And they have weight too.  All of that has to be supported, plus the Climber & Payload of course.  Lots and lots and lots of weight.  And, at essentially 1G all the way up (gravity at 50km is 98% of earth-normal).  Open Source also says that the tower/tube is ‘evacuated’  That means that there has to be some sort of door and opening/closing mechanism at the top and also means the modules themselves must be reinforced as external air pressure will try to compress them inwards.  More weight.

And then, of course, Open Source is proposing a 50km tall tower, filled with hydrogen, subject to lightning strikes and using electricity to power the magnets.  What could possibly go wrong?

I love some of the rewards specified:  If you contribute ‘just’ $500, you get ‘2 days above the atmosphere in high quality hotel comfort and restaurant all inclusive‘ – and your safety is guaranteed!  And if you contribute $100,000, you get a ‘Carbon Fiber Floating House‘ with ‘free satellite internet for life‘ – such a deal!  And you won’t have long to wait.  The Hotel is supposed to be ready in December, 2018 and the Floating House in January, 2019.  And hey, they accept BitCoin!

I could go on, but I think I’ve made my point and am being generous in saying that this is just a crazy proposal.

To be clear, I’m not knocking Nelson Semino’s SpaceShaft.  He’s done a lot of work with this and people I respect think there is some merit to his idea.  But this Open Source project is a different animal altogether; trying to raise $1,000,000 based on nothing more than a video and some kumbaya verbiage.

One last problem; the crowd-funding campaigns I’ve participated in are structured so that if the total amount of money pledged by the campaign deadline does not reach the funding goal, pledged funds are returned to the donor.  But Open Source is an Indiegogo Flexible Funding campaign – that means that the project will keep all money donated (minus Indiegogo’s 9% cut), regardless of how much is donated.  I think I’m very safe in saying that anyone foolish enough to donate to this project is going to be very disappointed…

Space Invaders meets the Space Elevator

This popped up in my Google Alerts today…

There is a gaming website called Ludum Dare.  It is:

“…a community of game developers best known for the accelerated game development event (Game Jam) of the same name. During a “Ludum Dare”, participants create games from scratch in a weekend, based on a theme suggested by the community. Ludum Dare events take place regularly, every April, August and December.

Founded in April 2002 by Geoff Howland, the Ludum Dare community has been running its brand of Game Jam for more than 12 years now (before the term Game Jam had even caught on). The website is run and maintained by Mike Kasprzak, an original participant and part of the team that has been bringing you the event since the beginning.”

Their latest offering is called “Space Elevators – An LD30 Jam Game“.  Aliens are coming to invade earth and you have to build a giant spaceship to evacuate humanity.  And, of course, you need a space elevator in order to get some of the required resources from another planet.

The game is pretty rough (for example, there doesn’t seem to be a way to play it in Easy mode – you have to click on Normal mode – otherwise you get only instructions, there are some spelling errors, etc.), but given their modus operandi, that’s perfectly understandable.  If I have time this weekend, I will play this and see what kind of success I can have.

The graphics really remind me of the old Space Invaders game; low-resolution, jerky movements, gaudy colors, etc. – it was one of my favorite games and I was sorry when the controller bit the dust.

Anyway, enjoy!

Sky Line is funded!

SPACE IS THE PLACE

by Jesse Gelaznik

 

Sky Line, the space elevator documentary film being produced by Going Up! Films, has been successfully funded!  They raised more than the $20,000 they needed and, as a result, it’s officially a “go” for the film.

Thank you to all of you who, like me, donated to getting this project finalized.  Can’t wait to see the film!

Painting with lasers…

On today’s edition of Marc Boucher’s most excellent SpaceRef eNewsletter, there was a video of the International Space Station being ‘painted’ by a green laser.

This gets a 9+ on my cool-o-meter…

One of the ongoing debates about an earth-based space elevator is how will the tether climbers be powered.  Lasers were the possibility originally suggested by Dr. Brad Edwards in his and Eric Westling’s reference work and they still may be the way to go, at least for part of the journey.  But alternatives now, especially the solar power solution originally suggested (I think) by Ben Shelef may replace or augment laser power.

And, a related ‘oldie but goodie’.  This is from the 2009 Space Elevator games and shows airborne targets being laser painted by the LaserMotive and Kansas City Space Pirates teams.

 

Down to the wire…

Pun intended.   We’re in the last few days of the Kickstarter campaigns for two space elevator documentaries.  Status updates from the producers:

First from Sky Line:

SPACE ELEVATOR by Richard Bizley

 

 

Greetings Backers!

We want to take a moment to thank all 139 of you for helping to get us so close to the 75% mark!  As we close in on 15k raised, we’re left with LESS THAN THREE DAYS to reach our funding goal — the campaign ends Wednesday night.  So as always, PLEASE SHARE our project link and together we can finish this movie! (LINK FOR SHARING: http://kck.st/1BXblCZ)

We are still getting some great press, including this excellent article on SKY LINE by noted festival programmer and film consultant Basil Tsiokos… “In the Works: SKY LINE” –

Please note that there are just two pieces of art left for contributors to the campaign at the $500 level: SPACE HOTEL by David A. Hardy and SPACE ELEVATOR by Richard Bizley.  These gorgeous prints, which also appear in our film, were generously donated by the artists and signed especially for this effort.

LET THE COUNTDOWN BEGIN!

… and a big THANK YOU from The Sky Line Family.

And from Shoot The Moon!

The campaign is going so well! We’re over 50%, with hundreds of backers. If everyone convinced one person to back at $15, we’d be made in the shade!

Here’s some big news:

1) Benjamin and Idil are headed to Seattle this week to film some more scenes for the documentary. We wouldn’t be planning this trip if we hadn’t been filled with confidence by the outpouring of support we’ve gotten in this campaign!

2) Reddit AMA! Tomorrow, Wednesday, at 10:00 EST, 7:00 PST, we’re doing an AMA on Reddit. We’ll post the link here, but you can also follow @ShootTheMoonDoc on twitter to get updates.

3) Google Hangout 2! On Thursday at 12:00 EST, 9:00 PST, we’re doing our second on-camera hangout where you can meet us and learn more about our project. Missed the first? It’s right here!

Thanks again, and keep spreading the word. We’re doing so well, now let’s make a strong push to the finish line!

-Benjamin and the Shoot The Moon Team (Kickstarter campaign here)

Just a few days left.  Please donate to one or both of these efforts and share this with your family and friends – thank you!

ISEC 2014/15 Strategic Plan

Now posted on the ISEC website is ISEC’s Strategic Plan for 2014/15.  The “ISEC Year” starts and ends at the yearly space elevator conference it sponsors, the most recent being at the end of last August and held at Seattle’s Museum of Flight.

As part of the Strategic Plan, ISEC decides on a “theme” for the upcoming year, a topic of interest that ISEC will focus on for the next 12 months and also the subject of the ISEC report for this year.

For this coming year, ISEC has decided upon two themes; “Marine Node Design Considerations” and “Tether Material Status Update“.  I don’t expect an ISEC report to be produced about the Tether Material, but it’s good to periodically revisit this subject as it continues to be (pun intended), the “long pole” in the tent…

Dr. Peter Swan, the President of ISEC, has recruited Vernon Hall to head up the Marine Node Design Considerations effort (I blogged about this earlier) while ISEC Director Dr. Bryan Laubscher will be heading up the Tether Material Status Update project.

So, go take a look at the current ISEC Strategic Plan, and if you see something that interests you and you want to get involved, send an email to pete.swan@isec.org.

Auroras

In January of this year, I blogged about a new short film, Auroras, which was running a Kickstarter campaign to get funded.  They succeeded and a few months ago released their (very) short film.

“In a metropolis at the north pole on planet Earth, a female cyborg (“The Occupant”) is called on a mandatory long term mission to travel along a space elevator through the Aurora Borealis to serve aboard Space Gate Auroras. Forced to leave her pregnant partner, another female cyborg (“The Loved One”), they say goodbye for an extended period. Two women, human or not, in love, are forced to separate and say goodbye for an extended period of time as one departs on a life changing journey to a place that redefines imagination.”

The graphics artistry in this film, especially of the space elevator, is superb.  I’m pretty sure that a ‘real’ space elevator is not going to look like the one in this short production, but it ranks pretty high on my cool-o-meter.  View their Kickstarter page to learn more about the production and what inspired it.

There are two versions of the film, one with a voice-over and one with a musical backdrop (which the writer/director, Niles Heckman, says he now prefers).  The short, especially in the beginning, strongly reminds me of the Harrison Ford Film, Blade Runner  (This reviewer also thought it reminded him of Blade Runner).

First is the voice-over version, followed by the instrumental backdrop version.  Make sure your sound is turned up and you watch it in full-screen mode, the graphics will blow you away…

Space Elevator Documentary updates

As many of you know, there are currently two Space Elevator documentaries in the works and both of them are hoping to raise enough funds via Kickstarter to help them finalize their project.

A brief update on both:

Sky Line is a documentary about the people trying to build an earth-based space elevator.  According to their most recent update, this project has 124 backers, has raised a little over $12K (out of the $20K they need) and has 7 days to go to get fully funded.  In addition, they just sent out this status report:

As you may have heard, SKY LINE won indieWIRE’s Project of the Week on Monday, and it’s all thanks to YOU.  It was certainly a photo finish, as we pulled ahead by 17 votes by the time the poll closed.  We’re heartened by this growing community we’re building together, and look forward to continued success as we race toward the home stretch…

Speaking of finish lines, ours is only a week away!  We’re so pleased to have broken the 12k funding barrier (again thanks to all 122 of you) but that also means we have another 8k to go if we want to collect the funds — which is crucial for us to complete this movie and enter it into festivals. So as always, PLEASE SHARE this project with friends and colleagues, and together we will get there.  Here’s a handy link for sharing:  http://kck.st/1BXblCZ

Shoot the Moon is a documentary about the people trying to build a lunar-based space elevator.  According to their most recent update, this project has 294 backers, has raised a little over $18K (out of $37K) and has 13 days to go to get fully funded.

Please consider supporting one or both of these worthwhile projects – I have!

Obayashi and the Space Elevator

In February of 2012, the Japanese construction company Obayashi announced plans to build a space elevator by the year 2050 (I had previously blogged about this announcement here, here and here).  Recently however, there have been a flurry of stories about the Obayashi project and several readers pinged me about them, wondering “what’s new”.

As it turns out, nothing is new.  The story that started the press avalanche was this one, released on September 22nd by ABC-Australia North Asia correspondent Matthew Carney.  All of the other Obayashi-Space Elevator stories we’ve seen recently were spin-offs, pick-ups from this one.  I contacted Mr. Carney and asked him what prompted him to write the story; was there anything new to report?  He replied:

There was no specific development about the Obayashi space elevator project that prompted the story that was first made known in 2012.   I ran the story because the ABC has never reported on it and simply because it [is] an amazing story that I assumed an audience would appreciate.  In fact the story has been the third most popular story over the entire network in last month.  Pretty amazing so looking at doing a follow up.

So, that’s the scoop, no “new news”.  It’s still very encouraging of course, if this is a real project and not a publicity stunt.  It’s all going to come down to the materials – if the Japanese engineers (or anybody) can solve this problem, then it all becomes possible…

Incidentally, the Obayashi plan is one of the architectures being compared and contrasted in the current ISEC study, “Architectures and Roadmaps“.  It is being primarily coordinated by Michael “Fitzer” Fitzgerald.  At the recent Space Elevator Conference, Fitzer gave a presentation as to the status of the study and held a mini-workshop where conference participants could look at, critique and offer suggestions to the report as it stood at that time.  I believe the goal is to get this report published sometime early next year.  This report will be added to several others produced by ISEC and will be available in both printed and electronic format. (Click on the picture thumbnail of Fitzer giving his presentation to the 2014 ISEC Space Elevator Conference to view a larger version)

The Eight Millionth Floor

ISEC Director and EuroSpaceward liason Dr. Martin Lades sent me this article which he was a technical resource for and which was recently published in the German newspaper Frankfurter Allgemeine.

The title of the article, “Die achtmillionste Etage” (The Eight Millionth Floor) refers to (roughly) the height of Geosynchronous orbit above the earth (assuming a floor height of 4 meters).

Dr. Lades also sent me these ‘fun facts’ about the publication:

“Conservative over-regional newspaper, with a circulation of ~400k, first shipped 1949, old school, second largest in Germany. Much closer to ‘The Financial Times’ if you would compare it and published in Frankfurt, the economic center for Germany.”

Wikipedia states:

  • “It is the German newspaper with the widest circulation abroad, with its editors claiming to deliver the newspaper to 148 countries every day.”
  • “The F.A.Z. promotes an image of making its readers think. The truth is stated to be sacred to the F.A.Z., so care is taken to clearly label news reports and comments as such.”

Dr. Lades concludes by writing: “…being published in that newspaper certainly counts as a step towards ‘people to stop laughing’ about a space elevator concept according to Clarke’s path for new endeavors.

So, if you read German (or can run it through one of the automated translators), enjoy.

(Thank you Martin!)

New Tether experiment planned

This is interesting…

A Tether project proposed by Shizuoka University in Japan has been chosen by JAXA (Japan Aerospace Exploration Agency) to “…test space elevator technologies.”

From the article:

HAMAMATSU, Japan — Shizuoka University’s idea has been selected by the Japan Aerospace Exploration Agency (JAXA) for a project aimed at releasing an artificial satellite from the International Space Station, all with the aim of testing space elevator technologies.

A team led by Yoshiki Yamagiwa, a professor at the university’s graduate school of engineering, proposed using for the experiment two, 10cm cube-shaped satellites tied with a synthetic fiber…

There’s not much more to the article and a quick check around the internet shows no other english-language articles about this.  They do write that this experiment will be in fiscal 2016, so that means anytime from April 1st, 2016 on…

Reader Darren Coste sent me this story (in Japanese) a few days ago, but when I ran it through the Google translator, it was difficult to understand.

Of course this is very cool, but I am not 100% sure that this experiment is really to test “space elevator technologies”.  Readers may recall the 5-year Spaceward/NASA partnership, the “Space Elevator Games”.  Even though they were called the space elevator games, NASA was not interested in ‘space elevators’ nor did they create the prize money fund for ‘space elevators’.  Rather they were interested in furthering power-beaming and strong tether technology and Spaceward’s Ben Shelef leveraged that into the Space Elevator Games.  Similarly, this may be “just” a tether test, not a space elevator technology test.

Regardless if it is ‘really’ a space elevator experiment or not, testing tethers in space is absolutely essential to further our understanding of this crucial technology.  The article does not say what type of material  the ‘synthetic fiber’ is – it would be Über-cool if it was carbon nanotubes.

And, there is a decent possibility that the tether WILL be made of carbon nanotubes.  Long-time readers may remember that Shizuoka University brought a carbon nanotube tether to the Strong Tether competition in 2009.  It didn’t perform well, but the fact that it was there was important (the picture thumbnail, left, is the tether that Shizuoka entered in the competition – click on it to see a full-size version).

I will be pinging my friends at the Japan Space Elevator Association to see if they know more about this upcoming experiment – stay tuned!

 

Geese and the Space Elevator

This past Friday, Kate Knibbs over at Gizmodo posted a story about “The Quest to build an elevator to space”.

Kate covers most of the basics but one thought she posted kind of leaves me scratching my head.  “Wayward flocks of geese…could smash into it“.  I’m not sure why anyone would be concerned about this.  A tether strong enough to support a space elevator would not be concerned with a goose flying into it.  A plane, yes, a goose, no.  Think about a goose flying into a half or three-quarter inch steel cable.  The goose would be killed or severely injured.  A carbon nanotube tether (or whatever is used) will be much, MUCH stronger than a steel cable and won’t be concerned with bird strikes.

Note that this is not the same as bird strikes on commercial or military airplanes.  First of all, the force is much greater when a goose hits a plane in flight – the plane is flying several hundred miles per hour.  And second, the materials used to build a plane are not anywhere near as strong as what a space elevator tether would need to be.

Space debris IS an issue; this stuff is traveling thousands of miles per hour and will thus have a lot of energy, enough to damage or even sever the tether (if it is not designed correctly).  Ensuring that space elevator can survive space debris hits (because it WILL get hit) will be one of the “must” design criteria (the International Space Elevator Consortium did an in-depth study on this topic and published a report on it).

Finally, I have to mention one of the comments on the story – I found it very amusing.  People who regularly read this blog know that I am no fan of space-elevator disaster scenarios, but this is just too good to ignore.

Whoever came up with this, I salute you!

Leonard David on the Space Elevator at space.com

And I’m late on this, but now finally starting to catch up on my postings…

Noted science writer (and Keynote speaker at the 2014 ISEC Space Elevator Conference) Leonard David put up a story at space.com about the space elevator.  He attended all three days of the conference and used what he learned there as a basis for his thoughts about the space elevator.  Money quote from the article:

“The next steps for the development of space-elevator infrastructures are focused around the creation and funding of a Space Elevator Institute,” [Dr. Peter ]Swan said. The institute would fund research projects addressing critical issues.

The development of prototype experiments, including tether material design for tensile strength, would be funded by the Space Elevator Institute, he added.”

It’s a very good article about the conference and space elevator technology.

Shoot the Moon!

Another Space Elevator Documentary is being produced and needs support for its Kickstarter campaign.  Producer Alexis Santos of Bad Character productions, supplied me with this information about the effort:

I’m working on a feature-length documentary about a space elevator (yes, the one that was Kickstarted). It’s called Shoot The Moon, and it’ll follow Michael Laine and the LiftPort team as they tackle their biggest experiment yet: sending a robot up 30,000 feet on a tether.

It’s never been done before, and when they do it, it’ll be the tallest free-standing human structure in existence — not to mention the highest a robot has ever gone without the help of rockets or an airplane. The chance of failure is real. The robot could come crashing down 5.68 miles to Earth and crush a 14-year dream, the space elevator idea… and our crew. If it’s a success, we could well be watching a revolution in commercial space.

We’ve just launched a Kickstarter campaign to complete the film, complete with miniature model-based effects.

Funding for this project closes Thursday morning, October 23rd.

Vote for Sky Line!

I have blogged earlier about Sky Line, the new Space Elevator Documentary being produced by Going Up! Films and have asked all of you to support their Kickstarter campaign (and I do so again – this is a very worthwhile project and something that needs to be done).

Earlier this week, indieWIRE had chosen this project as its “Project of the Day” and now it has a chance to win the “Project of the Week” award.  This would be a very good thing for this Documentary campaign, bringing it increased visibility and assistance in their digital distribution.

But to win, they need you to vote for it.  Please visit the voting site and cast your vote for Sky Line.  Voting ends Monday morning – thank you!

The Space Elevator in the Washington Post

The online Washington Post today posted a piece about the Space Elevator by Dominic Basulto.  It’s a good, generally accurate overview of the Space Elevator and was brought about by Dominic’s learning about the Diamond Nanothreads, the new “wonder material’ being much discussed these days.

Dominic contacted me while writing the story, asking my opinion on whether or not Space Elevator’s were feasible, given today’s technology.  I answered that the materials are just not there yet, though work in the lab shows much promise, and he accurately quoted me in his story.

Nice to see the Space Elevator make the Washington Post.  One item of note; he linked to a story about a Russian Space Elevator (I blogged about this way back when) and in that article, they fail to mention Yuri Artsutanov, the true father of the modern-day concept of the Space Elevator.  The man just gets no respect, even in the Russian press.  When he attended the ISEC Space Elevator Conference in 2010 (and what a treat it was to meet him), he told me (via his translator) that he and his family were essentially “persona non grata” in the old Soviet Union and that seems to have carried over to Russia.  They should treat him better and acknowledge his contributions – he’s a national treasure for that country.

The picture, above, is from the 2010 Conference.  Yuri is sitting with Roger Gilbertson, the person responsible for tracking down Yuri’s original article and having it translated into English.  At the conference, Yuri pointed out a few mistakes in the translation and worked with Roger to get them fixed.  The entire story of how Roger was able to get this article translated is fascinating and is chronicled in Volume 1 of CLIMB, the Space Elevator Journal.

Incidentally, Roger is now working for SpaceX, in charge of Public Relations I believe.  You can click on the picture thumbnail to see a full-size version of the picture.

ISEC September, 2014 eNewsletter now out

The September, 2014 ISEC eNewsletter has now been published and is available here.

Among other topics, the eNewsletter discusses TWO space elevator documentaries with ongoing Kickstarter campaigns to help them finish up (I’ve blogged about one and am soon going to blog about the other) and also asks people to contribute to a new feature; “Why should we build a space elevator”?

You can sign up here if you want to get on the ISEC mailing list so that you’ll be among the first to be “in-the-know”!

Kim Stanley Robinson’s Mars Trilogy Is Becoming a TV Show

I must admit, I have mixed feelings about this.  On one hand, the trilogy was EXCELLENT.  Exciting, thought-provoking, outstanding science-fiction.  On the other hand, the destruction to the Planet Mars following the sabotage of the Martian Space Elevator was gloriously, elaborately, excruciatingly described.

Current thinking dictates that a “real” space elevator would not be built like the one that Robinson described in Red Mars but I fear that is going to get lost in the shuffle.  I can already imagine the reaction once this production goes live; “See, we must never build a space elevator because it’s too dangerous – look what could happen!

On the other hand, there is the old saw about “There is no such thing as bad publicity”.  Yeah, right.  Maybe we can seize it as a “teaching moment”? :(

Still, I’m looking forward to it – I hope they do justice to the book and it doesn’t turn out to be one of these “loosely based upon…” productions.

And, if you haven’t read the Red/Green/Blue Mars trilogy, you’re missing a treat.  It really is wonderful reading, well deserving the many awards it received.

65th International Astronautical Congress gets underway

The International Astronautical Foundation is hosting its 65th International Astronautical Congress in Toronto, Canada, from September 29th through October 3rd at the Metro Toronto Convention Center.

The Space Elevator, and progress towards building it, will be well represented during this Conference. Dr. Peter Swan, the President of ISEC, will be giving a couple of presentations and Stephen Cohen, Technical Editor of Volume 3 of CLIMB, the Space Elevator Journal will also be presenting.

A new look!

I haven’t updated the “look-and-feel” of this website in, well, forever.  I’m a guy who always recommends to my friends that they keep their software up-to-date, but I guess I’m also like the carpenter and his own home…

Anyway, we’re now on WordPress 4.0, the current version, and have a new theme for the site.  I tried many of the ones out there (both free and for-fee), but wound up using the 2012 theme packaged with WordPress.  Clean, simple, neat, just the way I like it.  And the masthead, designed by Susan Seichrist, which looked really great with the old site theme, looks absolutely awesome (IMHO) with this new site theme (Thanks again Susan!).  The old site was a bit too condensed and this one is much more ‘airy’, maybe even too much.  I might be slightly modifying some of the .css over the next few weeks as I get more used to this new theme.  Or maybe not :)

I still have a few minor tweaks to do; conference pictures from this year are not yet appearing (those pesky spaces in file names) and several posts can now be made to ‘look better’ with the new theme.

Anyway, hope you like it – and now back to posting – I have a lot of new items for everyone!

A new space elevator documentary needs your help!

A new space elevator documentary is being created and it needs your help!  The good folks over at Going Up! Films have been following all of the efforts in the space elevator arena for the past several years, interviewing and filming, and they are now ready to finalize the documentary film they are creating.

They have started a Kickstarter campaign and we need everyone who is interested in the space elevator (or just cool projects in general) to participate and DONATE!

The film is to be called “Sky Line: The Space Elevator Documentary” and will cover (in their words):

“For the past several years, the SKY LINE team has been following the space elevator community as they pursue a seemingly impossible vision. From attending various scientific gatherings, to covering NASA’s high-stakes Space Elevator Games, we got to know the major players and watch their successes and struggles, both personal and professional.  As we wrap up filming and head into post-production, we’re asking for your help with finishing funds, so we can bring this fascinating story to life.”

If you support the idea of a Space Elevator, if you want to help get the word out to everyone, please DONATE and support this project.  I have and I hope you will too.

Visit their Kickstarter website to donate and to see the (very cool) trailer…

NASA Spinoffs

While this topic is not directly related to a space-elevator, I thought you would find it as interesting as I did.  And, with the recent news that NASA has chosen Boeing and SpaceX to ferry astronauts to/from the Space Station, it’s pretty timely.

Krista Coleman sent me a link to an infographic, a portion reproduced below, detailing some of the spinoffs that have been created due to NASA’s efforts over the past several decades.  Some I already knew, some were surprises to me.

Who knew that we could blame NASA for selfies!

To see the entire infographic, click here.

Thanks Krista!

The Space Elevator appears in the NSS Ad Astra magazine

In the Fall, 2014 issue of the National Space Society’s Ad Astra magazine, there is a four page article on the Space Elevator.

Unlocking the potential of space elevators is a four page article, written by Peter Swan (president of ISEC) and Cathy Swan, that referenced and summarized the recent IAA study on Space Elevators.  The whole article (which you can read here) is very good, but for me, the “money quote” was:

“The mission [for space business] for success is simple: Reduce the price for access to GEO to $500/kg while changing the model to: daily, routine, smooth-riding, less dangerous, environmentally sound, open size/mass criteria and mission enabling.”

Indeed…

GEO, the SE center of mass and tether taper…

One of the items which popped up in my FeedDemon Reader a while ago was a Blog post from a group called Sustainable Nano. They are: “The Center for Sustainable Nanotechnology is an initiative funded by the National Science Foundation to carry out research that will enable the development of sustainable, societally beneficial nanotechnologies. We are a group of well-connected but geographically diffuse scientists—at the University of Wisconsin-Madison (Hamers & Pedersen groups), University of Wisconsin-Milwaukee (Klaper group), the University of Minnesota (Haynes group), the University of Illinois at Urbana-Champaign (Murphy group), Northwestern University (Geiger group), and the Pacific Northwest National Laboratory (Orr).” It’s a neat website with plenty of interesting posts – I do like poking around in it.

Anyway to the post in question: “Space Elevator: A Lasting Dream for a Sky-reaching Tree“. The post describes the basics of the space elevator and how a product like carbon nanotubes, one of their group’s focus, could make it all possible. Pretty standard stuff, but the graphics are worth commenting on…

The first graphic shows how a space elevator is “held up” by using the comparison to holding a stick with a rope attached to it and, the other end of the rope attached to some sort of counterweight. Spin the rope about your head (or, in the post’s example, spin your entire body) and, if you’re going fast enough, the rope will stick out straight from you towards the counterweight simulating the appearance of a space elevator. This is a common enough analogy, but does have its flaws. A space elevator is held up by balancing the forces of gravity and centrifugal force but this analogy is only demonstrating the centrifugal force portion. You (or the stick) have taken the place of gravity by holding the “earth-end” of the tether and keeping the counterweight from flying away. But I can’t think of a better way to demonstrate it and it does have the advantage of quickly being able to demonstrate the basic idea. In the graphic though, it shows Geostationary orbit (GEO) much closer to the counterweight than to the earth and the center of mass of the system at GEO (that’s where the arrows in the graphic seem to be pointing to). Using the standard Edwards/Westling model, the elevator tether is 100,000 km long while GEO is approximately 35,700 km above the surface, i.e. much closer to earth than to the counterweight at the end of the tether. Regarding the location of the center of mass of the system, it needs to be above GEO.  I, myself, used to erroneously think that the center of mass would be at GEO and have visited this topic before. Dr. Blaise Gassend wrote up a simple explanation of why the center of mass has to be ABOVE geosynchronous (geostationary – GEO) orbit.

The second graphic, the one referring to the almost-certainly necessary taper of the elevator tether is one that I’ve seen in similar format several times before. I’ve wanted to address it before, but just haven’t – I’ve been too lazy to try and draw my own version of the “correct” ratios for a tethered taper (I’m just familiar enough with Photoshop to be dangerous…). You’ll note that the blog post shows the tether increasing from a point at the earths surface to something much wider at GEO and then reducing back to a point at the counterweight. Ignoring the location of GEO (the same as in the first graphic), the idea of the tether widening from the earth to GEO and then narrowing from GEO to the counterweight is correct. But the ratio is wrong:

Creating my own model took me a lot longer than I had first thought – I redid it a half-dozen times before I had something I thought was worthwhile. Of course it’s not to scale either, but the ratio of the taper width at the earth’s surface (13.52) to its width at GEO (35.44) to its width at the counterweight (23.88) is correct. Also, given the shown length of the tether, the location of GEO is correct. The graphic is greatly “squooshed” of course, being much shorter than a real tether in this scale (by several orders of magnitude). But the difference between the length and the width of the tether demands this type of alteration.

One other thought; I think when most people look at drawings of tether taper, they assume that it’s the width of the tether which must alter. That’s not necessarily the case. It can also be the thickness and that, I think, would have advantages. If the width of the tether was constant (once you’re above the atmosphere – in the atmosphere it may well be a cable), then you don’t have to design a climber which can accommodate varying widths; much easier, I think to design a climber for a tether with a varying thickness. But then again, maybe it will be something like a Hoytether.

Anyway, enough. Where did I get my numbers? They came from the most excellent spreadsheet developed by long time friend of the space elevator Maurice Franklin and which you can find by clicking on its page link at the top of blog (The SE Analysis Spreadsheet). I’ve blogged about this before, and I’d like to encourage readers to play around with it – when you do, you really begin to get a feel for the physical constraints that engineers and scientists have to deal with in the real world. I used his Edwards/Westling Baseline model with no changes.

Dr. Brad Edwards at ideacity

Some months ago, Dr. Brad Edwards made an appearance at the ideacity forum in Toronto and gave a talk on Space Elevators.  You can view the video here – it’s not long, less than 20 minutes.  I always enjoy hearing Dr. Edwards speak about the Space Elevator, but I do have a couple of issues with his presentation.

To listen to the talk, one would think that the idea of a Space Elevator was first explored in science fiction.  He did not mention either Yuri Artsutanov or Jerome Pearson, the first engineers who came up with the modern-day idea of a Space Elevator and who, in the vernacular of the field, “ran the numbers” (especially Jerome Pearson).  Both of them did so long before Sir Arthur C. Clarke popularized the idea in his book The Fountains of Paradise (both authors, by the way, corresponded with Sir Arthur about space elevators).  There can be no disputing Dr. Edwards contribution towards the effort to build a Space Elevator; he (and Eric Westling) wrote THE book on space elevators, but he wasn’t the first person to describe what a real space elevator might look like.

According to his talk, we now have the carbon nanotubes necessary to build a space elevator.  Oh, if only that were true. I wish, I wish, I wish…  Yes, there have been carbon nanotubes built which are 55 cm long and yes, there have been carbon nanotubes which have tested out at 200 GPa, but not at the same time.  And, even if you can get CNTs to grow to this length and have perfect (no defects) structure, they’re still not going be aligned – and alignment is key to making threads of macro-strength.  I do agree that we’re getting closer, but I don’t think we’re all that close yet.  Spinning CNTs into threads is a whole different kettle of fish than spinning normal animal or plant fibers into threads.

And finally, let’s talk about my “favorite” subject, space-based solar power (SBSP).  I’m already on record as being very skeptical (to say the least) about SBSP being able to provide power except under unique, niche circumstances.  Dr. Edwards talked about the Obayashi project to build a space elevator and provide SBSP for Japan.  Let’s run the numbers for “just” Japan.  The most current electric generating capacity I could find for Japan was for 287,000,000 kW (for 2013).  Energy available at earth’s orbit is 1.3kW/m2.  What efficiency number should we use?  Let’s say 40%.  I think that’s generous.  Yes, I know there are cells out there which are slightly more efficient, but they are expensive and, when you see how much we’re going to need, I think that cost economy will play a role here.  So, to generate 287,000,000 kW will require about 440,000,000 m2 of solar cells (or 440 km2).  This is roughly equivalent to the land area of the Seychelles or of New Orleans.  How much mass?  If you figure 5 kW / kg (see the Space Elevator Feasibility Condition for details), you come up with 57,400,000 kg (or 57,400 metric tons).  Now that’s just for the cells themselves.  There will also need to be a massive structure holding them together, an enormous amount of cables, antennas to beam the power to earth and also some sort of propulsion / steering system (along with the propulsion mass) so that you can keep the collection array pointed at the sun and the transmission array pointed at Japan.  The best I can do here is a guesstimate – 50% more for the ancillary mass?  I think that’s probably ballpark.  So, a total mass of about 86,000 metric tons.  If you have an elevator that lifts 100 tons to GEO every week, then it’s going to take you 860 weeks (16&1/2 years) to just lift the mass up there.  Then you have to either lift personnel to put it together and maintain it or else robots to perform the same.  You’ll need to periodically replace the panels due to space debris and other space-related hazards and you’ll need to replace the propellant too.  And that’s assuming everything goes right.  Things always go wrong, so you’ll need to deal with that too.

Add that all up and you can see why I’m skeptical about this.  Now, if you wanted to replace “just” the nuclear generating capacity of Japan with SBSP…  Nuclear plants provide about 18% (roughly 1/5th) of Japan’s electric power – at least they did when they were all online.  So if you wanted replace just the nuclear power generating ability with SBSP, well, then, maybe…  Maybe that is a possibility, with an engineering project dwarfing anything else created by human beings.

Color me skeptical, very very skeptical…

One final note; Dr. Edwards talks about his company – I’m assuming he’s referring to this.

The cost of living on the Moon (and Mars!)

Several weeks ago, I was contacted by the people at NeomamStudios, telling me about a graphic they had put together showing the total cost of living on the Moon.  This was part of the 45th Moon Landing Anniversary Celebration and is, I think, of interest to people who support the idea of a Space Elevator.

If you are like me, and believe that the major (or at least “a” major) use of the Space Elevator is to help us colonize the solar system and, to paraphrase Robert Heinlein, get some of our eggs out of earth’s “basket”, then numbers like this are what we need to make our case.  It will be very, very, very, very expensive to create and support a lunar colony using traditional rocket technology, there’s just no getting around it.  A space elevator is the only feasible way to do something like this.

I could have reproduced the entire graphic here, but it’s quite large and I’d rather link to one which is already out there.  I went to the Neomam web site and the graphic is there, so I’ve linked to it and reproduced just a portion of it here.  And, lo and behold, when I went to their website, I found they had also created a graphic showing numbers for the living costs on Mars.  I’ve also reproduced a portion of that graphic here and clicking on either one of them will take you to the Neoman website where you can see the full graphics.

Fun facts from the graphics:

  • On Mars, it would cost $37,244 to watch Psy’s Gangnam Style in HD on YouTube.
  • On the Moon, downloading “Fly me to the Moon” would cost about 12.8 cents.

CNBC visits the idea of a Space Elevator

CNBC’s John Schoen wrote an article about the Space Elevator, releasing it just before the recent Space Elevator Conference and I am just getting ’round now to linking to it…

In addition to writing about Space Elevators, John also discusses flying cars and freight drones. ISEC‘s Peter Swan is quoted in the story.

There are also, unfortunately, the usual inane comments about space elevators in the article’s Comments section.  I tried to correct a couple of the worst, but it’s like trying to drain a lake with a spoon :(

Using the Space Elevator to get rid of Radioactive waste…

An idea that has been occasionally discussed is to use the space elevator to launch radioactive waste to the sun, a permanent waste disposal plan if there ever was one…

The magazine Popular Science had an article about this in 2010.   It’s been a subject of blog discussions/debates (like this one on PhysicsForum and this one on the ScienceForum).  It was even a topic during the “Shotgun Science” section of the 2013 Space Elevator Conference (I can’t remember who did that particular presentation).

German blogger Kai Malmus gives us his uniquely European thoughts on this topic here.  According to Mr. Malmus, a Commission (put into action by the German government and all opposition parties) has been empowered to find a solution within the next couple of years and then start construction by of a waste storage unit here on earth by 2032.  All of Europe, indeed all of the fission-using world, is searching for an answer to this problem.  And, anyone who has followed the Yucca Mountain nuclear waste depository saga in the USA over the past 25+ years, knows that it is a political football to end all political footballs.

Is using a Space Elevator to get rid of nuclear waste a practical idea?  I don’t think so, but not for the “usual reasons”.  People worry about the safety of the elevator but I believe we can produce an elevator lift system of very high reliability.  Payloads will all have some sort of guidance system so that if the unlikely happens, they can be safely splash-landed in the ocean.  And people worry about somehow contaminating the sun with this waste.  The sun is so enormous, that it could handle this relative paltry amount of additional matter without even noticing it.

However, “paltry amount” is, as I said, relative, and therein lies the problem, IMHO.

How much nuclear waste do we produce each year?  According to World Nuclear Association website, about 200,000 metric tons of low and intermediate levels of waste and about 10,000 metric tons of high-level nuclear waste are produced each year.  And then there is the “legacy waste problem“, hundreds of thousands of more metric tons of waste that must be dealt with somehow.

Assuming that we’re not going to see a functioning space elevator until probably at least 2035 (and I’m being optimistic here) and the fact that the initial elevator(s) aren’t going to carry more than double-digit tons of payload (and there will be multiple customers clamoring for the space elevator’s services) and the fact that the nuclear industry is continuing to produce nuclear waste, I’m afraid that this is a problem which is going to have to be solved here, on the planet, without the help of a Space Elevator.

I wish I could be more optimistic – the idea sounds grand, kind of like space-based solar power.  But when you run the numbers, then things don’t look so cheery…

Perhaps only a very tiny portion of this waste truly needs to be disposed of, then maybe.  But if that’s true, then it can probably be dealt with here and we won’t need a space elevator to get rid of it.

But I invite debate on the matter – prove me wrong!

SPEC 2014

Each year, the Japan Space Elevator Association (JSEA) holds a Climber competition acronymed SPEC and each year they get more and more ambitious in their goals.  This year for instanace, they had a 1,200 m long tether held up by balloons.  Climbers are powered by batteries and scores are awarded based on speed, payload, etc.

The competition was held this past August 6th through the 9th, but they have not posted results or pictures yet.  Several people from the JSEA, including JSEA President Shuichi Ohno, attended the just-completed ISEC Space Elevator Conference and they brought a verbal summary as well as a video they created, summarizing the competition.  As soon as that is posted, I’ll link to it here.  There is a very scant summary of the competition here (note, this website is in all Japanese – if you need it translated, open it with Google Chrome).

Of note, one JSEA’s major purposes in attending the ISEC Space Elevator Conference was to begin the effort to turn this into an international competition.  While this competition is held in Japan each year, only once or twice has something similar happened in Europe and, since the ending of the NASA/Spaceward Space Elevator Games, nothing like this has happened in the US.

There were a lot of people interested in this concept and a lot of discussion followed.  The bottom line is that there appears to be enough enthusiasm here to support these Games, but a ‘champion’ must be found – someone willing to take on the considerable organizing challenge this represents.  If you are interested in heading this up or assisting in any way, please contact ISEC President Dr. Peter Swan.

2014 ISEC Space Elevator Conference Wrapup

Another Space Elevator Conference is in the books, three very interesting and successful days.  There were a lot of highlights and, in no particular order (and just my own opinion, of course) they are;

The attendance of several people from Japan and the Japan Space Elevator Agency (JSEA).  They are very, very interested in partnering with ISEC (or someone) to try and turn their Climber competition into a world-wide event.  I think this is a great idea, but as always with these things, it takes a “champion”, someone willing to spend the time in the US to actually make this happen.  There were some ideas as to organizers floated during the conference and I think more will show up.  I hope this happens.  Regardless, it was good to see the Japanese contingent.  Outside of ISEC, they are the only other organized group, to my knowledge, that is working to advance the cause of the space elevator.  The fact that they are all nice people and fun to be around is just an added bonus.

The increase in expertise and skill sets within ISEC.  During my four-year term as president, ISEC became a “real” organization; we became a 501c3, elected a Board of Directors, came up with Strategic Plans, began creating ISEC Reports and CLIMB Journals and began to sponsor the ISEC Space Elevator Conference.  Dr. Peter Swan became president at last year’s Conference and is really beginning to leverage his network of business, military and aerospace contacts that he has built up in his long and extensive career.  People such as Skip Penny, Michael Fitzgerald and Vernon Hall are all veterans of fields that have a direct bearing on being able to actually build a space elevator.  Their expertise will help us advance our understanding of a space elevator at a more rapid rate and with more knowledge than had been possible previously.  Pete has also brought in other speakers and contacts and has, in general, greatly raised the professionalism and knowledge of the ISEC network.

How well the conference was run.  This was the fourth (fifth?) year that David Horn and his network of volunteers has run the conference and it was a very competent job.  This year all of the presentations were taped and should be available on our YouTube or Vimeo network, another first.  I hope that David continues in this function for the next several years – he does a great job.

I could list more, like the Speech Competition, the well-run workshops, the awesomeness of the Museum of Flight as a Conference Venue, etc., but I think those three were my highlights.

See you in 2015!

(Picture thumbnail is of NBC’s Digital Science editor, Alan Boyle, interviewing ISEC President Dr. Peter Swan.   Clicking on this thumbnail, as for all other thumbnails on this blog, will display a full-size picture).

Shotgun science

This is always a fun session.  People can suggest not-fully-thought-out ideas (another way of saying “half-baked”?) to the crowd and use them as an initial ‘sounding board’ to see if it has merit or not.  Over the years, we’ve heard some good ideas in this session and, frankly, some really wacky ones, too, but as I started out saying, they’re always a lot fun.  Great to see people challenging assumptions and thinking outside of that box…

There were six speakers:

David Schilling proposed covering satellites with an aerogel, several inches (a foot?) thick.  He reasoned that this cover could act as a barrier to space debris/dust that would hit the satellite and, if the debris was big enough to penetrate the aerogel, the aerogel would act to keep the satellite in, more or less, one piece, thus minimizing space debris, and all with only a minimal addition of weight to the satellite.

Keith Loftstrom suggested keeping emotions out of reactions to someone else’s idea.  And a reminder, be your own skeptic first.  Run the numbers on a proposal before you bother bringing it to anyone elese.

Charles Gorlinski suggested we pay more attention to building in some redundancy into a space elevator system and proposed, for example, using multiple tethers, all heading to the same Apex Anchor (counterweight) separated by some sort of spacing ring.  If one tether breaks, the system does not disintegrate.

Dr. Bryan Laubscher asked all attendees to network, network, network, looking for people / corporations / government agencies, etc. with money and, if/when found, to direct them Peter Swan (for space elevator interest) or to himself (Bryan) for carbon nanotube development interest.

Michael Laine briefly talked about LiftPort’s Lunar Elevator project and showed an animation of creating the Lunar Space Elevator.  He thinks it is possible to do this “within the current decade” at a cost of ~USD 800 million.

Finally, Phil Richter gave us some thoughts from his perspective as a structural engineer.  He proposed a much wider tether, perhaps 10m or 100m wide, for several reasons; 1) redundancy/stronger/safety/stability 2) changing the structure’s aspect ratio – something that structural engineers know is important 3) Logistics – easier to work with 4) Economy of scale and 5) better from a budgeting estimate viewpoint.

I really like the aerogel-cushioned satellite idea – it makes so much sense that there has to be something wrong with it…

Mini-Workshop #3: Space Elevator Architectures and Roadmaps

The third and final workshop of the conference was put together to flesh out an initial Space Elevator Architectures and Roadmaps document put together by Michael Fitzgerald (“Fitzer”), the champion of this topic – the 2014 (current) ISEC Theme.

Fitzer was in overall charge of this workshop and is going to be heading up the ISEC report on this topic.  He has long and extensive expertise in studies of this type and is another example of the valuable skill set that ISEC President Dr. Peter Swan has been recruiting since he became president.

Three groups were created, each of them handling a different aspect of Space Elevator Architectures and Roadmaps.  After a brainstorming session, each group reported back to the conference at large.  At some future point, these reports will consolidated and made available to the public.

Space Elevator Speech Competition

New to the conference this year was a competition to create an “Elevator speech”.  If you’re unfamiliar with the concept, the idea of such a speech is this; assume you’re in an elevator with someone who you want to convince of the need and usefulness of building a Space Elevator.  You have only a short time – it is an elevator ride.  In case you’re unfamiliar with the concept, there are several articles available – a typical one is here.

Conference attendee Peter Robinson came up with the idea and was in charge of the competition.  It was announced at the beginning of the conference and a sign-up sheet was available for all those who wanted to participate.  The competition happened today, just before lunch.  There were a total of 7 speakers and 4 judges (of which I was honored to be one).

Each person talked, in turn, for no more than 90 seconds (Peter timed it and cut off the people who exceeded it) and the judges created scores on “Technical Merit” and “Style”.  Peter tabulated the scores and the winners were announced.  First place received a $100 Amazon gift certificate and Second Place received a $50 Amazon gift certificate.

Lana Gorlinski was awarded First Prize and Campbell Gorlinski was awarded Second Prize.  All of the competitors did a fine job.  This picture shows Lana and Campbell, with their prizes, and most of the rest of the Conference attendees.

This competition had a very practical aspect, making all of us who support the concept of a space elevator think in terms of convincing others, in a very short time, of the worthiness of the project.  I would expect this competition to become a fixture at future Space Elevator Conferences.

Mini-Workshop #2: Marine Node Design Concepts

Next up was the second mini-workshop of the conference, this one targeted towards requirements, design considerations, issues & concerns, etc., with a marine-based earth port.  “Conventional wisdom” says that the earth anchor of a space elevator will be based in the ocean (for details, see Dr. Brad Edwards & Eric Westlings book).  This has several advantages, but also brings up some problems vs. a land-based earth station.

Conference attendee Vernon Hall was in overall charge of this workshop and is going to be heading up the ISEC report on Marine Node Design Concepts (the 2015 ISEC theme).  Mr. Hall has extensive experience in designing ports, including the Port of Los Angeles and should be a very valuable resource for ISEC and their goal of increasing our understanding of the Space Elevator.

Four groups were created, each of them handling a different aspect of Marine Node Design.  After a brainstorming session, each group reported back to the conference at large.  At some future point, these reports will consolidated and made available to the public.

Living on Cloud 9: Or What We Could Do With a Lunar Space Elevator!

Next up was author Paul Wieland.  He talked about “sphere habitats that could be built on the moon and then “launched” to earth via a lunar elevator.  Paul said that Buckminster Fuller came up with this idea of sphere habitats (we’re talking about spheres 1,000 or 1,500 meters in diameter) and that, because they would be inhabited and that the inhabitants generate heat, this heat would cause the sphere to float.  He quickly ran through the numbers which claim that this could be true.  Frankly, I have to think about this and look at the numbers more thoroughly before I accept this as do-able, but the idea is very intriguing.

I have never heard of this idea before, but a quick Google search turned up a number of sites that discuss the concept, for example here and here.

Philanthropy vs. Investment – Starting a Space Elevator Institute

The first presentation of Day 3 was by ISEC President Dr. Peter Swan.  He talked about raising money for the space elevator effort and ran through the pro’s and con’s of starting up an Institute vs. a Charitable Foundation.  He talked about the type of people that could be approached, and the pitch that we in the community need to make; a space elevator is an investment in the future of mankind and should be approached that way.  A financial payoff is there, but it is considerably down the road and occurs only after a large investment in the infrastructure of a space elevator.

Dr. Swan made the point that philanthropic “types” can have this long-term vision and therefore could be approachable with such a pitch.  He concluded by talking about the ongoing efforts of he and ISEC to put together a “package” that can be used in this effort.

2014 ISEC Space Elevator Conference – Day 3

And Day 3 begins.  The conference began with ISEC President, Dr. Peter Swan, giving a special award of recognition to Ben Shelef.  Anyone who has followed the space elevator “arena” or this blog knows who he is, but for those of you who may not, Ben and his Spaceward Foundation partnered with NASA to create the Space Elevator Games.  This multi-year effort, targeted towards advancing the state of the art in power-beaming and strong tether development, culminated in the award of $900,000 to LaserMotive for their successful efforts in the 2009 Power Beaming competition.  These events were the first of these competitions and were the precursors of Climber competitions in both Japan and Europe.  They also generated a lot of publicity and put the space elevator “on the map” for a lot of people.  Ben also created the Space Elevator Feasibility Condition, a paper that quantifies tether strength and Climber power requirements in a rigorous manner, giving others a baseline to work for.  He’s also given multiple talks on the Space Elevator, provided a sanity check to space elevator development efforts and, I’m sure, other space-elevator related activities that I’m forgetting at the moment.

This award is well deserved – congratulations Ben and all of us in the space elevator community are much better off because of your involvement.

Robotics Competition & Day 2 wrapup…

The day wrapped up with the Robotics Competition.  This is an event which ISEC has been associated with for several years and it’s always a lot of fun.  Teams enter their robotic climbers which ascend/descend a 25 foot ribbon, multiple times hopefully, and carry “payload” which they deliver to the “space station” at the top of the ribbon.  A score, taking into account climber category, speed, payload delivered, etc. is calculated and then winners are announced.

There were winners in several categories; In the “(Almost) Anything Goes” category, WASABI finished first and Atomic Robots finished second.  In the “Lego only” category, Cody Labs finished first, Geosynchronous Robots finished second and The Climbing Scorpions finished third.  Finally, Cody Labs also won the Engineering Award for Best Engineered Robot.  All of the winners received gift certificates to the Microsoft store, donated by Microsoft. (Pictured are (l) David Schilling, creator of the Robotics competition and a representative from Cody Labs, receiving congratulations and the Microsoft Gift Certificate).

The kids enjoy it, the parents enjoy it and it teaches real building and troubleshooting skills to children, hopefully stimulating their interest in engineering disciplines for their future education.

A successful Day 2 of the Conference.  Lots of interesting topics and lots of audience participation – on to day 3.

Mini-Workshop #1: Research Activities and Global Cooperation

There are three Mini-Workshops scheduled for this conference and the first one is now underway.  Dr. John Knapman will be directing this Workshop aimed at getting several small groups to focus on the various Research Activities needed to advance our understanding of the space elevator.  John categorized several different topics (broadly categorized into topics that some work has been done on and those topics that have been largely untouched) and some of these will be focused on by these various groups.  The goals of this workshop, as in all workshops, are to get people brainstorming about these topics and come up with ideas and action items to attack them.

Road to Space Elevator Era

This afternoon’s presentations started with Akira Tsuchida talking about a new IAA study; “Road to Space Elevator Era”.  This will be a follow-on to the recently released IAA report Space Elevators: An Assessment of the Technological Feasibility and the Way Forward.  One of they key outputs of this report will be the Space Elevator Prediction Feasibility Index (SEPFI).  I am going to be very interested in this – it should be a rigorous engineering review and prediction as to if and when, in the IAA’s opinion, a space elevator can be built.

As part of his presention, Akira also mentioned that the Science Council of Japan defined the Space Elevator project as part of the Master Plan for large research projects – 2014.  It is the first step of starting very small research but has recognized Space Elevator as National project.  Hopefully this will lead to significant government funding.

JSEA attends the 2014 ISEC Space Elevator Conference

The next presentation was by Shuichi Ohno, chairman of JSEA, the Japan Space Elevator Association.  JSEA has been around for many years, and like ISEC, is dedicated to advancing our understanding of the Space Elevator.  Four people from Japan (three from JSEA) are attending the ISEC conference.  Mr. Ohno’s presentation started by talking about the activities of JSEA.  This includes several Climber competitions, including one, SPEC, which now requires climbers to ascend 1,200 meters.  They have ambitious plans for 2015 – increasing this amount to 5,000 meters (Note: they had the 2014 competition earlier this month and, unfortunately, I’ve not posted about it yet – I will rectify that after the conference.  You can find information about it here.)

Shuichi ended his presentation with a challenge to the US – to begin, again, conducting climber competitions, and this time, to do it in cooperation with JSEA.

Devin Jacobson, an American living in Japan and a member of JSEA, gave the next presentation; JSEA Outreach efforts and potential Business collaboration, or, The Space Elevator – Business or Pleasure?  Devin discussed about how, if we want to make a space elevator “real”, we will need to have to have more funding and he discussed some possibilities of how that could happen. For example, he talked about how the balloon climber competitions have advanced the art of being to able to send communications from a ballon based node – handy when needed in temporary situations (like a natural disaster or similar).

2014 ISEC Space Elevator Conference – Day 2

Day 2 of the conference is underway.  Our first presentation is a highly technical one: “For space elevator rope – Production of exfoliated graphene and high surface charged-cellulose nanocrystals as stabilizer synthesized by lyophilized acidic hydrolysis“.  Dr. Sherif Hindi of King Abdulaziz University, in Jeddah, Saudi Arabia, gave this presentation via Skype.  It was a difficult presentation to understand; a combination of the subject being highly technical, the presentation given via Skype and that English is not Dr. Hindi’s first language (though his English was excellent).  But if I got the gist of it, Dr. Hindi’s work consists of stabilizing/purifying Graphene (and thus making it stronger?) via cellulose nanocrystals produced from renewable materials.  I will need to review his paper to learn more.

The second presentation was by Dr. Bryan Laubscher, chief technologist of Odysseus Technologies, Inc. (full disclosure; I am an investor in OTI).  He gave us an update on OTI’s continuing efforts to build longer, stronger nanotubes.  He discussed the patents that OTI has made, both in terms of taking existing ‘forests’ of nanotubes, drawing off threads and strengthening those threads and also in growing stronger nanotubes themselves.  His presentation elicited many questions and a whole lot of discussion.  OTI’s problem now (as with a lot of startups, especially in this field) is funding.  OTI is doing a lot with a little – a little more would certainly help.  Dr. Laubscher made the observation yesterday that if you want to really advance the possibility of a space elevator, materials science is the place to be.  I’ve pointed out the obvious many times on this blog that without the materials strong enough to make a viable space elevator tether, this is all just a pipe-dream.  Long, strong tubes are the answer.

2014 ISEC Space Elevator Conference – Day 1 Wrapup

And, to get this out of the way right away, it’s a good thing that the Bears-Seahawks games was a preseason one – ’nuff said…

The first day of the 2014 ISEC Space Elevator Conference was outstanding.  The morning was “setting the stage”, introductory information and a fine Keynote speech from Science writer Leonard David of how the Space Elevator fits into the current space paradigm.

The afternoon sessions were all technical ones and I think it’s safe to say all attendees learned a lot.  It’s hard for me to pick a favorite, but I must comment on the final session of the day, on Weather; how it can be measured, how it can be forecast and what it means for a space elevator.  The presenter, Winifred Crawford ended her presentation with the suggestion that we start recruiting a meteorologist (or two) and freely admitted that she was hooked on the concept of the Space Elevator.

All of these sessions are being recorded and will be on our video website in the near future – watch this space for an announcement…

On to Day 2!

Weather support to the Space Elevator program

Winifred Crawford gave a talk about some specific aspects of weather, specifically wind and lightning and what is really known about them.

Winifred talked about the amazing power of lightning and that there are two types; natural and triggered.  She also pointed out that the areas now posited as ‘best’ locations for the Space Elevator (for example, on the equator – west of the Galapagos Islands) have much less lightning that other areas do, but that the number of lightning strikes even there is not zero – it must be planned for.  She also talked about how lightning hurt (but did not destroy) the Apollo 12 mission and that lightning did destroy an Atlas Centaur launch.

She also talked about rain and the problems it causes and noted that much less data has been captured about weather over ocean locations than it has for land locations and so satellite weather gathering will be key.  Satellites can also capture sea surface temperature and current data, knowledge of both of which will almost certainly be needed to run a Space Elevator.

Finally, she showed how all this data can be used to forecast the weather at a Space Elevator Base station, something which will be absolutely critical for a successful operation.

The Space Elevator in the Earth’s Atmosphere

Dr. John Knapman give a presentation on how we deal with the Tether and the Climber within earth’s atmosphere.  Even though the distance of this portion of the trip is tiny compared to the total trip (~50km vs 100,000km), there are many “special” hazards which must be dealt with.  This consists of weather; wind, rain and lightning.

John discussed “Spring Forward” (winding up the tether at the ground, stretching the tether, attaching the Climber and then letting the tether “spring” back into its original shape), “Boxed Climber” (having the Climber packaged in a protective box for its journey through the atmosphere) and High Stage One (a structure built to have the elevator base station be above the atmosphere and thus bypass these problems altogether).

Space Elevator Simulation Validation and Metrology

Peter Robinson gave a very interesting talk on how we might go about validating the design and simulating the operation of a Space Elevator.  He pointed out some famous engineer failures from history and all of them, of course, failed to accurately simulate their operation.  A common theme to many of these failures was that they were the first of their design – there was no other similar acting structure to use in validation and simulation.

This will obviously be a problem with a Space Elevator too – the first one will be, well, the first one.  Peter proposed how simulation, validation and testing can be built up step by step.  He also emphasized that MTBF for Climbers is very important – they will be very difficult, if not impossible, to service while on the tether.  Peter also posited that the building of a Lunar elevator will be a pre-requisite to building an earth-based space elevator.

“You won’t be allowed to build an earth-based space elevator unless you can convince an awful lot of people that the elevator will be safe.”

Loop Technology

Keith Loftstrom, author of the Lofstrom Loop, gave a presentation on “Loop Technology – Increasing Throughput, Decreasing Radiation”, his take on how to improve (or even in some cases, to discover) assumptions being used in designing a space elevator.  He touched on many subjects, but one was the location of the Ground Station.  Conventional wisdom has that it should be located on the equator for efficiency reasons.  Keith posited a Ground station 8 degrees south of the equator, claiming that a) this would allow the tether to be ’tilted’ allowing things to be oriented off of the tether, b) it keeps the tether out of the way of things in orbit around the equator and c) that if the tether breaks, the mass above the break will be flung out into space along the imaginary equator line, thus missing other tethers that may be constructed.

He also talked about how to use the Space Elevator to eliminate the Van Allen Belts.

He discussed much more – this is just a brief.  His talk, like all of the others, are being recorded and will be available some weeks after the conference.

If you want to view this presentation now, visit http://www.launchloop.com/SEPulley.

Concept of Operations

One of the ISEC reports, finished a year or so ago, is entitled “Space Elevator Concept of Operations“, a fairly in-depth look as to how the operational aspects of a Space Elevator system might actually work.  This includes the land port, the ocean port, the tether itself, attaching / detaching the climber to the tether, etc., etc., etc.

Skip Penny headed up this project and gave a talk on the report and current thinking on this topic.